
 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

 Volume no 11 Issue 1 January 2024

14

Operating Systems in Engine Control Unit
[1] Prathmesh Bahir, [2] Prashant Andhale, [3] Minal Deshmukh, [4] Shraddha Habbu

[1] [2] [3] [4] Department of Electronics and Telecommunication Engineering, Vishwakarma Institute of Information Technology,

Pune, India

Corresponding Author Email: [1] prathmesh.22111230@viit.ac.in, [2] prashant.22110496@viit.ac.in,
[3] minal.deshmukh@viit.ac.in, [4] shraddha.habbu@viit.ac.in

Abstract— In the contemporary landscape of automotive technology, the intricate orchestration of vehicle functions heavily relies on

the Engine Control Units (ECUs) that meticulously manage and optimize engine performance. The efficacy of these ECUs hinges upon

the underlying operating systems, their capacity for real-time responsiveness, unwavering reliability, and deterministic behaviour. This

comprehensive research paper delves into the diverse array of operating systems utilized within Engine Control Units, placing a specific

emphasis on real-time operating systems (RTOS). Real-time capabilities stand as linchpins in automotive applications, ensuring the

punctual and predictable execution of critical tasks. This study embarks on a thorough investigation of several prominent RTOS

solutions that dominate this domain. Among these are the Embedded Kernel, Vehicle Distributed Executive, AUTOSAR, FreeRTOS,

QNX, Integrity, and Linux fortified with real-time patches. The paper adopts an in-depth analytical approach, seeking to unravel the

nuanced strengths, weaknesses, and overall suitability of these operating systems for deployment within the exacting and demanding

automotive environment. Each system is scrutinized through various lenses, meticulously exploring their capacities, adaptabilities, and

limitations within the intricate ecosystem of modern vehicle engineering. This comprehensive analysis endeavours to provide invaluable

insights for automotive engineers, system designers, and stakeholders in the automotive industry. By elucidating the intricate nuances of

these operating systems, the paper aims to guide informed decision-making processes regarding the selection and implementation of

RTOS solutions, thereby advancing the realm of automotive technology towards higher levels of efficiency, reliability, and safety.

Keywords— Automotive embedded systems, real-time operating systems, fault-tolerant ecus, autosar architecture, engine control unit

software.

I. INTRODUCTION

The integration of Engine Control Units (ECUs) into

vehicles has marked a significant transformation in the

automotive industry, facilitating precise engine performance

optimization and control. The effectiveness of these ECUs

relies intricately on the ability of the underlying operating

system to meet strict real-time demands imposed by

automotive applications. Real-time operating systems

(RTOS) assume a pivotal role in ensuring deterministic

precision in executing critical tasks such as sensor data

processing, actuator control, and seamless communication

with other vehicle systems.

This research paper aims to navigate the intricate

landscape of operating systems embedded within Engine

Control Units. The focal point of examination lies in RTOS

solutions that play an instrumental role in preserving

temporal integrity within automotive control systems.

Specifically, an analysis will be conducted on Embedded

Kernel, Vehicle Distributed Executive (OSEK/VDX),

AUTOSAR, FreeRTOS, QNX, Integrity, and Linux with

real-time patches. Each of these operating systems possesses

distinctive features and trade-offs, directly impacting their

applicability and feasibility within ECUs.

The overarching objective of this study is to furnish a

comprehensive understanding of the strengths and limitations

of diverse RTOS options in the context of automotive

applications. By scrutinizing key attributes—real-time

responsiveness, scalability, reliability, and integration

ease—the aim is to equip automotive engineers, researchers,

and developers with insights crucial for making informed

decisions while selecting an operating system for Engine

Control Units.

As we progress, subsequent sections of this paper will

offer detailed analyses of each RTOS. These analyses will

illuminate their architectural intricacies and performance

characteristics, contextualizing their roles within real-time

automotive scenarios. The exploration will intertwine the

specific features of these operating systems with their

practical implications within the automotive ecosystem,

unravelling the nuances that underlie their functionality and

relevance within ECUs.

II. THEORETICAL RESEARCH ON AVAILABLE EMBEDDED

OPERATING SYSTEMS

2.1 Real-Time Operating Systems(RTOS)

RTOS serves as the cornerstone for time-critical

applications within ECUs, ensuring precise task execution

and deterministic behaviour. Tailored for safety-critical

systems, RTOS focuses on efficient task and resource

management, meeting stringent timing requirements in

automotive applications such as engine control and

driver-assistance systems. Its core lies in implementing

scheduling algorithms like Rate Monotonic Scheduling

(RMS) and Earliest Deadline First (EDF), guaranteeing

timely task completion. RTOS offers key features including

deterministic task scheduling, low interrupt latency,

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

 Volume no 11 Issue 1 January 2024

15

priority-based task management, memory protection, fault

tolerance, and pre-emptive multitasking. These

functionalities enable optimal resource utilization and

responsiveness, crucial in modern vehicles' multitasking

environments.

2.1.1 OSEK/VDX (Operating System Embedded

Kernel/Vehicle Distributed eXecutive)

OSEK/VDX, a fundamental framework for embedded

systems in vehicles, standardizes real-time operating systems

(RTOS) to ensure reliable task scheduling and resource

management. This framework prioritizes deterministic task

execution, crucial for safety-critical functions within

automotive Engine control units (ECUs). However,

configuring these RTOS for specific ECUs often involves

manual processes due to the absence of comprehensive

automation tools.

To address these challenges, various approaches have

emerged, including manual file generation, GUI-based tools

offering guidance, visual designers like SmartOSEK for

automatic file creation, and frameworks supporting

model-based development. Mader's prototype toolchain

complements this landscape by aiming to facilitate

continuous safety analysis. It establishes a centralized

repository for Information, fostering seamless collaboration

across engineering domains and specialized tools.

The integration of this toolchain with Enterprise Architect

and other specialized tools ensures consistency and

traceability across different artifact types and domains. This

represents a shift from document-centric approaches to more

efficient, interconnected model-based development, aligning

with ISO 26262 standards. OSEK/VDX's emphasis on

deterministic task execution complements this effort,

reinforcing the critical role of reliable task scheduling and

resource management in automotive safety-critical functions.

Key Features:

• Task Scheduling Precision: OSEK/VDX ensures

tasks adhere to predefined time constraints, vital for

maintaining vehicle safety and reliability.

• Minimal Interrupt Latency: Reducing interrupt

latency enables swift responses to real-time events,

critical in applications like collision avoidance.

• Priority-Driven Task Management: Prioritizing

tasks ensures immediate attention to essential

functions, enhancing vehicle safety.

• Fault-Tolerant Mechanisms: Robust fault tolerance

strategies prevent system failures and data

corruption, enhancing ECU reliability.

• Pre-emptive Multitasking: Supporting multitasking

allows for optimal resource use and responsiveness

in complex automotive environments.

2.1.2 FreeRTOS

FreeRTOS, specifically designed for embedded systems,

emphasizes real-time task scheduling and management

within engine control units (ECUs). Its core objective

revolves around ensuring the efficient execution of critical

functions in diverse automotive applications. By functioning

as a pre-emptive multitasking kernel, FreeRTOS enables the

concurrent execution of tasks based on assigned priorities,

catering to the real-time demands of these applications.

The system's adaptability across various microcontroller

architectures and its ability to handle limited resources make

it a suitable choice for ECUs in automobiles. Its small

footprint and minimal overhead accommodate the stringent

resource constraints often present in automotive embedded

systems.

Additionally, FreeRTOS's open-source nature facilitates

active community involvement, fostering continuous

improvements and comprehensive support through forums

and extensive documentation. Furthermore, its integration

within the RISC-V ecosystem further broadens its

applicability, enabling it to address the real-time demands of

automotive systems built on the RISC-V architecture. This

integration underscores FreeRTOS's role in delivering

scalable and efficient embedded solutions tailored to the

needs of automotive technology, catering to the critical

functions and tasks within these systems.

Key Features:

• Deterministic Task Scheduling: FreeRTOS

schedules tasks based on priorities, meeting

stringent timing requirements in safety-critical

systems.

• Low Interrupt Latency: Minimized latency allows

quick responses to real-time events, crucial for

time-sensitive automotive functions.

• Priority-Based Task Control: Prioritization ensures

immediate handling of critical functions, bolstering

vehicle safety measures.

• Memory Protection and Resilience: Incorporating

robust memory protection and fault tolerance

safeguards data and system reliability.

• Pre-emptive Multitasking: Simultaneous task

execution optimizes resource utilization in

multifaceted automotive environments.

2.1.3 QNX

QNX stands out for its reliability as a real-time operating

system (RTOS), earning recognition in the industry for its

robustness and scalability. It's specifically tailored for

safety-critical applications, notably within automotive engine

control units (ECUs). This operating system is engineered to

seamlessly integrate and deliver high performance across a

multitude of electronic systems within vehicles.

Acknowledged for its reliability, QNX has gained

prominence as a trusted solution, particularly in

environments where safety is paramount. Its robustness

ensures the consistent and predictable execution of critical

functions, essential for maintaining the safety and efficiency

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

 Volume no 11 Issue 1 January 2024

16

of automotive systems.

Furthermore, QNX's scalability allows it to adeptly adjust

to the complexities inherent in modern electronic systems

found in vehicles. It accommodates a diverse array of

electronic components and functionalities, providing a stable

and dependable platform for a wide spectrum of automotive

applications.

Its capability to meet the exacting demands of

safety-critical applications within automotive ECUs

underscores its reputation for reliability, scalability, and

seamless integration. QNX plays a pivotal role in ensuring

the smooth and secure operation of electronic systems within

vehicles, prioritizing safety and efficiency in the automotive

sector.

Key Features:

• High Reliability and Fault Tolerance: QNX

guarantees reliability, crucial for safety-critical

functions in automotive ECUs, even amidst

hardware or software failures.

• Real-Time Precision: Precise and predictable task

execution is vital for critical automotive functions

like braking and collision avoidance.

• Symmetric Multiprocessing (SMP) Support: SMP

enhances processing power, allowing parallel task

execution without compromising real-time

capabilities.

• Robust Message Passing: Efficient inter-process

communication ensures seamless integration of

diverse automotive functionalities.

• Safety-Critical Application Support:

Comprehensive support for critical automotive

systems like adaptive cruise control and collision

warning systems.

2.1.4 INTEGRITY

INTEGRITY, a distinguished real-time operating system

(RTOS), stands out in effectively managing safety-critical

applications within automotive engine control units (ECUs).

It's revered for its high reliability, emphasizing robust

partitioning and secure memory protection mechanisms

crucial for ensuring dependable and secure vehicle operation.

Specifically tailored for safety-critical environments,

INTEGRITY shines in its ability to deliver consistent and

predictable execution of critical functions within automotive

systems. Its core strengths lie in providing a dependable

platform with robust partitioning, ensuring that different

applications within the ECUs operate independently,

preventing interference and enhancing system reliability.

Moreover, INTEGRITY's emphasis on secure memory

protection mechanisms contributes significantly to the safety

and security of vehicle operations. By securely isolating and

protecting critical system components, it ensures a reliable

and safe operational environment for automotive electronic

systems.

INTEGRITY's excellence in managing safety-critical

applications within automotive ECUs is attributed to its high

reliability, robust partitioning mechanisms, and secure

memory protection features. These qualities solidify its role

as a dependable and secure real-time operating system,

essential for maintaining the reliability and security standards

in automotive technology.

Key Features:

• Reliability and Robustness: INTEGRITY prioritizes

reliability, crucial for managing safety-critical

applications in vehicle ECUs.

• Secure Partitioning: Isolation and protection of

critical tasks and data ensure security and integrity

within the ECU.

• Real-Time and Embedded Support: Comprehensive

backing for real-time and embedded applications

enhances overall ECU performance and

responsiveness.

• Scalability and Adaptability: Flexible design

accommodates varied automotive ECU

architectures and evolving vehicle needs.

• Compliance with Safety Standards: Adherence to

automotive safety standards like ISO 26262 ensures

regulatory compliance and functional safety.

2.2 General-Purpose Operating Systems with Real-Time

Capabilities

General-purpose operating systems with real-time

capabilities provide a versatile platform accommodating

various applications, including those requiring real-time

responsiveness within ECUs. While not exclusively

dedicated to real-time tasks like RTOS, these systems

integrate features enabling efficient handling of

time-sensitive functions. Leveraging scheduling algorithms

such as Completely Fair Scheduler (CFS) and Deadline

Scheduler, these OS variations support multitasking and

prioritize tasks for optimal performance, especially critical in

automotive environments. They offer adaptability, allowing

customization and real-time patching to meet specific timing

requirements in safety-critical applications. These OS

options strike a balance between general computing tasks and

the responsiveness needed for time-critical automotive

functions.

2.2.1 Linux (with real-time patches)

Embedded Linux, augmented with real-time patches,

emerges as a versatile platform suited to address the intricate

demands of automotive Engine Control Units (ECUs). This

amalgamation provides a robust foundation facilitating

multitasking capabilities, accommodating diverse

communication protocols, and offering customizable

solutions within vehicular engine systems.

In the automotive domain, the integration of Embedded

Linux empowered by real-time patches creates a flexible

framework capable of simultaneous task execution, ensuring

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

 Volume no 11 Issue 1 January 2024

17

timely responses to critical events in engine control.

Real-time patches augment Embedded Linux, enabling it to

proficiently manage essential real-time functions while

accommodating a spectrum of applications within Engine

Control Units.

Furthermore, the adaptability of Embedded Linux,

strengthened by real-time capabilities, facilitates the

integration of various communication protocols crucial for

automotive engine applications. This adaptability fosters

seamless connectivity and communication among different

engine systems, enhancing overall functionality and

interoperability.

The amalgamation of Embedded Linux with real-time

patches represents a significant solution for Engine Control

Units, offering adaptability, extensive functionality,

multitasking capabilities, support for diverse communication

protocols, and customizable features. This combination

serves as a compelling and robust platform, well-suited for

meeting the dynamic requirements of contemporary

vehicular engine systems.

Key Features:

• Open-Source Flexibility: The Customizable nature

allows tailoring to specific ECU requirements,

fostering innovation and unique functionalities.

• Community Support and Development Tools: Rich

ecosystem facilitates collaboration and continuous

improvement in Embedded Linux for automotive

applications.

• Multitasking Capabilities: Supports simultaneous

execution of tasks, enhancing user experience and

functionality within the vehicle.

• Diverse File Systems and Networking:

Compatibility with various file systems and

networking protocols ensures seamless integration

and connectivity.

• Real-Time Patch Options: Real-time patches

address timing requirements for critical

applications, ensuring reliability in demanding

automotive environments.

2.2.2 AUTOSAR (AUTomotive Open System

ARchitecture)

It is standardized software architecture for Engine Control

Units (ECUs), known as AUTOSAR (AUTomotive Open

System ARchitecture), comprises two platforms: the Classic

Platform (CP) and the Adaptive Platform. While the CP

caters to deeply embedded low-complexity devices, the

Adaptive Platform addresses the evolving needs of modern

automotive systems, particularly in high-performance

computing and communication.

The Adaptive Platform extends its support to many core

processors, heterogeneous computing platforms, and

high-bandwidth communication technologies like Ethernet.

This enables parallel processing and offers flexibility through

Service-Oriented Architecture (SOA), allowing dynamic

service and client linking during runtime, providing

developers an advantage.

Moreover, the AUTOSAR Adaptive Platform relies on

Scalable service-Oriented MiddlewarE over IP (SOME/IP) to

ensure scalability across devices of various sizes and

operating systems, including small devices like cameras,

telematics devices, and infotainment devices.

In the domain of Engine Control Units, AUTOSAR

provides standardized software frameworks. These

frameworks facilitate the integration of diverse

functionalities and allow flexibility in software

configuration. AUTOSAR also supports essential features for

dependable engine control systems, such as safety and

security functionalities like priority-based scheduling,

authenticated code execution, and controlled memory and

CPU resource allocation.

Key Features:

• Standardized Software Architecture: Defines

software structure for seamless integration and

collaboration among various automotive systems.

• Modularity and Reusability: Modular design

supports the development of reusable software

components, fostering innovation and collaboration.

• Scalability for ECU Platforms: Adaptable to diverse

ECU requirements, ensuring compatibility and

optimal performance within vehicle systems.

• Interoperability across Systems: Facilitates

communication and integration among different

ECUs and electronic systems, enhancing vehicle

connectivity.

• Support for Advanced Driver-Assistance: Enables

the development of sophisticated ADAS features for

enhanced vehicle safety and convenience.

III. FINAL DISCUSSION

The diverse array of operating systems integrated within

Engine Control Units (ECUs) reveals a spectrum of

functionalities and trade-offs that significantly influence the

automotive industry's evolution. Real-Time Operating

Systems (RTOS) occupy a central role within automotive

control systems, ensuring the deterministic execution and

responsiveness of critical tasks.

A thorough analysis encompassed Embedded Kernel,

Vehicle Distributed Executive (OSEK/VDX), AUTOSAR,

FreeRTOS, QNX, Integrity, and Linux with real-time

patches. Each RTOS exhibits unique attributes, encapsulating

varying degrees of real-time responsiveness, scalability,

reliability, and integration ease, shaping their applicability

within ECUs.

Fundamental frameworks like Embedded Kernel and

OSEK/VDX prioritize deterministic task execution essential

for safety-critical functions but encounter challenges in

manual configuration. AUTOSAR's standardized

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

 Volume no 11 Issue 1 January 2024

18

architecture, addressing Classic and Adaptive Platforms,

emphasizes modularity and scalability, accommodating

diverse ECU requirements and communication protocols.

FreeRTOS stands out for adaptability across

microcontroller architectures, suitable for

resource-constrained automotive systems. QNX's robustness

and scalability establish it as a trusted solution, ensuring

reliability and seamless integration across multiple electronic

systems in vehicles.

INTEGRITY's emphasis on secure partitioning and

memory protection ensures the management of safety-critical

applications, guaranteeing reliable and secure operations.

Linux, enhanced with real-time patches, presents an

open-source, customizable platform capable of multitasking

and supporting various communication protocols, offering

flexibility in engine control applications.

This comprehensive analysis of RTOS within automotive

applications highlights a mosaic of strengths and limitations,

crucial for informed decision-making among automotive

engineers and developers. Evaluating real-time

responsiveness, scalability, reliability, and integration ease

becomes imperative when selecting an operating system

tailored to modern vehicle technologies.

This exploration underscores the intricate relationship

between operating systems and the effectiveness of Engine

Control Units, emphasizing the importance of balancing

real-time demands with scalability, reliability, and

integration ease. By illuminating the nuanced attributes of

each RTOS, this study aims to serve as guidance,

empowering stakeholders in the automotive industry to

navigate the complex landscape of operating systems, and

facilitating informed decisions crucial for advancing

automotive control systems.

REFERENCES

[1] Macher, G., Atas, M., Armengaud, E., & Kreiner, C.

(2015). Automotive real-time operating systems. ACM

SIGBED Review, 11(4), 67–72.

[2] Lingga, W., Budiman, B. A., & Sambegoro, P. (2019).

Automotive Real-Time Operating System in Vehicular

Technology Progress Review. 2019 6th International

Conference on Electric Vehicular Technology (ICEVT).

[3] Mendonca, L. S., Luceiro, D. D., Martins, M. E. S., &

Bisogno, F. E. (2017). Development of an engine control

unit: Implementation of the architecture of tasks. 2017

IEEE International Conference on Industrial Technology

(ICIT).

[4] Cuatto, T., Passeronge, C., Lavagno, L., Jurecska, A.,

Damiano, A., Sansoè, C., … Sangiovanni-Vincentelli, A.

(1998). A case study in embedded system design.

Proceedings of the 35th Annual Conference on Design

Automation Conference - DAC ’98.

[5] Bhat, A., Samii, S., & Rajkumar, R. R. (2020).

Fault-Tolerance Support for Adaptive AUTOSAR

Platforms using SOME/IP. 2020 IEEE 26th International

Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA).

[6] A thesis submitted for the degree of Master of Science 2nd

September 2011 Supervised by Prof. Jim Woodcock and

Dr. Matthew Naylor on FreeRTOS and Multicore.

[7] Steffen Kollman, Victor Pollex, Kilian Kempf, Frank

Slomka, Matthias Traub, et al.. Comparative Application

of Real-Time Verification Methods to an Automotive

Architecture. 18th International Conference on Real-Time

and Network Systems, Nov 2010, Toulouse, France.

pp.89-98.

[8] Carlos Garre, Domenico Mundo, Marco Gubitosa,

Alessandro Toso, "Real-Time and Real-Fast Performance

of General-Purpose and Real-Time Operating Systems in

Multithreaded Physical Simulation of Complex

Mechanical Systems", Mathematical Problems in

Engineering, vol. 2014, Article ID 945850, 14 pages,

2014. https://doi.org/10.1155/2014/945850.

[9] Georg Macher, Eric Armengaud, and Christian Kreiner.

Automated Generation of AUTOSAR Description File for

Safety-Critical Software Architectures. In Lecture Notes

in Informatics, 2014.

[10] Zou, Y.; Zhang, W.; Weng, W.; Meng, Z. Multi-Vehicle

Tracking via Real-Time Detection Probes and a Markov

Decision Process Policy. Sensors 2019, 19, 1309.

[11] Wenying Zuo, Yinguo Li, Fengjuan Wang, Xiaobo Hou.

“A New Design Method of Automotive Electronic

Real-time Control System.” Chongqing University of

Posts and Telecommunications. 2012.

[12] OSEK/VDX: OSEK/VDX Operating System

Specification Version 2.2.2., July 5 (2004).

